Friday, 4 August 2017

2 order moving average filter


Saya perlu merancang filter rata-rata bergerak yang memiliki frekuensi cut-off 7,8 Hz. Saya telah menggunakan filter rata-rata bergerak sebelumnya, namun sejauh yang saya ketahui, satu-satunya parameter yang dapat diberikan adalah jumlah titik yang akan dirata-ratakan. Bagaimana ini berhubungan dengan frekuensi cut-off Kebalikan dari 7,8 Hz adalah 130 ms, dan Im bekerja dengan data yang diambil sampelnya pada 1000 Hz. Apakah ini menyiratkan bahwa saya harus menggunakan ukuran jendela filter rata-rata bergerak dari 130 sampel, atau adakah hal lain yang saya lewatkan di sini pada 18 Juli 13 di 9:52 Filter rata-rata bergerak adalah filter yang digunakan dalam domain waktu untuk menghapus Kebisingan yang ditambahkan dan juga untuk tujuan pemulusan namun jika Anda menggunakan filter rata-rata bergerak yang sama di domain frekuensi untuk pemisahan frekuensi maka kinerjanya akan menjadi yang terburuk. Jadi dalam hal ini menggunakan filter domain frekuensi ndash user19373 3 Feb 16 at 5:53 Filter rata-rata bergerak (kadang-kadang dikenal bahasa sehari-hari sebagai filter boxcar) memiliki respon impuls persegi panjang: Atau, dengan kata lain berbeda: Mengingat respons frekuensi sistem diskrit-waktu Sama dengan transformasi Fourier diskrit waktu respons impulsnya, kita dapat menghitungnya sebagai berikut: Yang paling diminati untuk kasus Anda adalah respons besarnya filter, H (omega). Dengan menggunakan beberapa manipulasi sederhana, kita bisa mendapatkannya dalam bentuk yang mudah dipahami: Ini mungkin tidak akan mudah dimengerti. Namun, karena identitas Eulers. Ingatlah bahwa: Oleh karena itu, kita dapat menulis di atas sebagai: Seperti yang saya nyatakan sebelumnya, apa yang benar-benar Anda khawatirkan adalah besarnya respons frekuensi. Jadi, kita dapat mengambil besarnya hal di atas untuk menyederhanakannya lebih jauh: Catatan: Kita bisa menjatuhkan istilah eksponensial karena mereka tidak mempengaruhi besarnya hasil e1 untuk semua nilai omega. Karena xy xy untuk dua bilangan kompleks hingga x dan y, kita dapat menyimpulkan bahwa kehadiran istilah eksponensial tidak mempengaruhi respons magnitudo keseluruhan (sebaliknya, ini mempengaruhi respon fase sistem). Fungsi yang dihasilkan di dalam kurung besarnya adalah bentuk kernel Dirichlet. Terkadang disebut fungsi sinc periodik, karena menyerupai fungsi sinc agak dalam penampilan, namun bersifat periodik. Bagaimanapun, karena definisi frekuensi cutoff agak underspecified (-3 dB point -6 dB point first sidelobe null), Anda dapat menggunakan persamaan di atas untuk menyelesaikan apa pun yang Anda butuhkan. Secara khusus, Anda dapat melakukan hal berikut: Set H (omega) ke nilai yang sesuai dengan respons filter yang Anda inginkan pada frekuensi cutoff. Atur omega sama dengan frekuensi cutoff. Untuk memetakan frekuensi waktu kontinyu ke domain diskrit-waktu, ingatlah bahwa omega 2pi frac, di mana fs adalah sample rate Anda. Temukan nilai N yang memberi Anda kesepakatan terbaik antara sisi kiri dan kanan dari persamaan. Itu seharusnya panjang rata-rata bergerak Anda. Jika N adalah panjang rata-rata bergerak, maka frekuensi cut-off perkiraan F (berlaku untuk N gt 2) pada frekuensi normal Fffs adalah: Kebalikannya adalah Rumus ini sama sekali asimtotik untuk N besar, dan memiliki sekitar 2 kesalahan. Untuk N2, dan kurang dari 0,5 untuk N4. P. S. Setelah dua tahun, akhirnya inilah pendekatan yang diikuti. Hasilnya didasarkan pada perkiraan spektrum amplitudo MA di sekitar f0 sebagai parabola (rangkaian orde 2) menurut omega 2 Omega2 (Omega) Omega2 (frac - frac) yang bisa dilakukan lebih tepat di dekat persimpangan nol MA (Omega) - Frac dengan mengalikan Omega dengan koefisien yang mendapatkan MA (Omega) kira-kira 10.907523 (frac - frac) Omega2 Larutan MA (Omega) - frac 0 memberikan hasil di atas, di mana 2pi F Omega. Semua hal di atas berkaitan dengan frekuensi cut -3dB, subjek dari posting ini. Terkadang meskipun menarik untuk mendapatkan profil atenuasi pada stop-band yang sebanding dengan urutan ke 1 IIR Low Pass Filter (single pole LPF) dengan frekuensi cut-3dB yang diberikan (seperti LPF disebut juga integrator bocor, Memiliki tiang tidak persis di DC tapi dekat dengan itu). Sebenarnya kedua MA dan orde 1 LPF IIR memiliki kemiringan -20dBdecade di band berhenti (satu membutuhkan N yang lebih besar daripada yang digunakan pada gambar, N32, untuk melihat ini), namun sedangkan MA memiliki nulls spektral pada FkN dan sebuah Pada evelope, filter IIR hanya memiliki profil 1f. Jika seseorang ingin mendapatkan filter MA dengan kemampuan penyaringan yang sama seperti filter IIR ini, dan cocok dengan frekuensi cut off 3dB agar tetap sama, setelah membandingkan dua spektrum, dia akan menyadari bahwa riak pita stop dari filter MA berakhir 3dB di bawah filter IIR. Untuk mendapatkan riasan stop-band yang sama (yaitu redaman daya noise yang sama) sebagai filter IIR, rumus dapat dimodifikasi sebagai berikut: Saya menemukan kembali skrip Mathematica dimana saya menghitung cut off untuk beberapa filter, termasuk satu MA. Hasilnya didasarkan pada perkiraan spektrum MA sekitar f0 sebagai parabola menurut MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) kira-kira N16F2 (N-N3) pi2. Dan menurunkan persimpangan dengan 1sqrt dari sana. Ndash Massimo 17 Jan at 2: 08FIR Filter Basics 1.1 Apa filter quotFIR filtersquot FIR adalah satu dari dua jenis filter digital utama yang digunakan dalam aplikasi Digital Signal Processing (DSP), tipe lainnya adalah IIR. 1.2 Apa yang dimaksud dengan quotFIRquot quot quotFIRquot berarti quotFinite Impulse Responsequot. Jika Anda memasukkan sebuah impuls, itu adalah contoh quot quotquot tunggal yang diikuti oleh banyak sampel quot0quot, nol akan keluar setelah sampel quot1quot berhasil melewati garis penundaan filter. 1.3 Mengapa respon impuls quotfinitequot Dalam kasus umum, respons impuls terbatas karena tidak ada umpan balik dalam FIR. Kurangnya umpan balik menjamin bahwa respons impuls akan terbatas. Oleh karena itu, istilah quotfinite impulse responsequot hampir identik dengan quotno feedbackquot. Namun, jika umpan balik dipekerjakan namun respons impulsnya terbatas, saringannya masih berupa FIR. Contohnya adalah filter rata-rata bergerak, di mana sampel ke-N sebelumnya dikurangkan (diberi umpan balik) setiap kali sampel baru masuk. Filter ini memiliki respons impuls yang terbatas meskipun menggunakan umpan balik: setelah sampel N dari impuls, keluaran Akan selalu nol 1.4 Bagaimana cara mengucapkan quotFIRquot Beberapa orang mengatakan huruf F-I-R orang lain mengatakan seolah-olah itu adalah jenis pohon. Kami lebih memilih pohonnya. (Perbedaannya adalah apakah Anda berbicara tentang filter F-I-R atau filter FIR.) 1.5 Apa alternatif filter FIR filter DSP juga bisa menjadi quotInfinite Impulse Responsequot (IIR). (Lihat FAQ dspGurus IIR.) Filter IIR menggunakan umpan balik, jadi saat Anda memasukkan dorongan output secara teoritis berdering tanpa batas waktu. 1.6 Bagaimana filter FIR dibandingkan dengan filter IIR Masing-masing memiliki kelebihan dan kekurangan. Secara keseluruhan, meskipun, kelebihan filter FIR lebih besar daripada kerugiannya, jadi penggunaannya lebih banyak daripada IIR. 1.6.1 Apa kelebihan Filter FIR (dibandingkan dengan filter IIR) Dibandingkan dengan filter IIR, filter FIR menawarkan keuntungan berikut: Mereka dapat dengan mudah dirancang untuk menjadi quotlinear phasequot (dan biasanya). Sederhananya, filter fase linier menunda sinyal masukan tapi tidak mendistorsi fasanya. Mereka mudah diimplementasikan. Pada sebagian besar mikroprosesor DSP, perhitungan FIR dapat dilakukan dengan perulangan satu instruksi. Mereka cocok untuk aplikasi multi-rate. Dengan multi-rate, maksud kami adalah quotdecimationquot (mengurangi laju sampling), quotinterpolationquot (meningkatkan laju sampling), atau keduanya. Apakah penipisan atau interpolasi, penggunaan filter FIR memungkinkan beberapa perhitungan dihilangkan, sehingga memberikan efisiensi komputasi yang penting. Sebaliknya, jika filter IIR digunakan, setiap output harus dihitung secara individual, bahkan jika output itu akan dibuang (jadi umpan balik akan dimasukkan ke dalam filter). Mereka memiliki sifat numerik yang diinginkan. Dalam prakteknya, semua filter DSP harus diimplementasikan dengan menggunakan aritmatika presisi hingga, yaitu sejumlah bit. Penggunaan aritmatika presisi-terbatas pada filter IIR dapat menyebabkan masalah yang signifikan karena penggunaan umpan balik, namun filter FIR tanpa umpan balik biasanya dapat diimplementasikan dengan menggunakan sedikit bit, dan perancang memiliki lebih sedikit masalah praktis untuk dipecahkan terkait dengan aritmatika non-ideal. Mereka bisa diimplementasikan dengan menggunakan pecahan aritmatika. Tidak seperti filter IIR, selalu mungkin untuk menerapkan filter FIR menggunakan koefisien dengan besaran kurang dari 1,0. (Keuntungan keseluruhan dari filter FIR dapat disesuaikan pada outputnya, jika diinginkan). Ini adalah pertimbangan penting saat menggunakan fixed-point DSPs, karena ini membuat implementasi menjadi lebih sederhana. 1.6.2 Apa kelemahan dari Filter FIR (dibandingkan dengan filter IIR) Dibandingkan dengan filter IIR, filter FIR kadang-kadang memiliki kekurangan sehingga memerlukan lebih banyak memori dan perhitungan untuk mendapatkan karakteristik respons filter yang diberikan. Juga, tanggapan tertentu tidak praktis untuk diterapkan dengan filter FIR. 1.7 Istilah apa yang digunakan dalam mendeskripsikan filter FIR Impulse Response - Responsresipresi dari filter FIR sebenarnya hanyalah himpunan koefisien FIR. (Jika Anda memasukkan quotimplusequot ke filter FIR yang terdiri dari sampel quot1quot yang diikuti oleh banyak sampel quot0quot, output filter akan menjadi himpunan koefisien, karena 1 sampel bergerak melewati setiap koefisien pada gilirannya untuk menghasilkan output.) Tap - A FIR quottapquot hanyalah sebuah pasangan koefisien pasangan. Jumlah kerah FIR, (sering disebut sebagai kuotot) adalah indikasi dari 1) jumlah memori yang dibutuhkan untuk menerapkan filter, 2) jumlah perhitungan yang diperlukan, dan 3) jumlah kuotil yang dapat dilakukan filter dapat terjadi, Lebih banyak keran berarti lebih banyak redaman stopband, sedikit riak, filter yang lebih sempit, dan sebagainya. Multiply-Accumulate (MAC) - Dalam konteks FIR, quotMACquot adalah operasi untuk mengalikan koefisien dengan sampel data tertunda yang sesuai dan mengumpulkan hasilnya. FIR biasanya membutuhkan satu MAC per tap. Kebanyakan mikroprosesor DSP menerapkan operasi MAC dalam satu siklus instruksi tunggal. Band Transisi - Band frekuensi antara tepi passband dan stopband. Semakin sempit band transisi, semakin banyak keran yang dibutuhkan untuk mengimplementasikan filter. (Sebuah band transisi quotsmallquot menghasilkan filter quotsharpquot.) Delay Line - Kumpulan elemen memori yang menerapkan elemen penundaan kuotasi-kuota 1 dari kuotasi FIR. Circular Buffer - Penyangga khusus yang quotcircularquot karena incrementing pada akhirnya menyebabkannya membungkus ke awal, atau karena decrementing dari awal menyebabkannya membungkus sampai akhir. Penyangga melingkar sering disediakan oleh mikroprosesor DSP untuk menerapkan quotmovementquot sampel melalui jalur penundaan FIR tanpa harus benar-benar memindahkan data ke memori. Ketika sebuah sampel baru ditambahkan ke buffer, secara otomatis akan menggantikan model pemodelan rata-rata dan eksponensial yang tertua. Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan menggunakan Model moving-average atau smoothing. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke bagian atas halaman.)

No comments:

Post a Comment